OFFICE USE ONLY

Date of validation event:	26 April 2018
Date of approval by Academic Board:	28 November 2018
Approved Validation Period:	5 years from September 2019
Date and type of revision:	APSC approved standard part-time delivery routes
	$29 / 4 / 19$.
	Dec 2019 Partner approval appendix added for
	LondonTec
	Sep 2020 APSC approved module replacement in MSc
	Computing and MSc Computer Science, COM741
	replaced by COM744 17/03/20
	June 2020 Partner approval appendix added for IST
	Independent Science and Technology College
	22 July 2020
	Validation of MSc Data Science and Big Data Analytics,
	panel approved module replacement in MSc Computing
	and MSc Computer Science, COM701 replaced by
	COM713
	$23 / 9 / 20$ AB approval of Advanced Practice routes
	12 April 2021 Partner approval appendix added for
	Global Pathways Academy
	$03 / 09 / 2021$ Partner approval appendix added for CICRA
	IMSc Cyber Security)
	$13 / 07 / 2022$ APSC approval of ADP702 Advanced
	Practice: Entrepreneurship
	$10 / 03 / 2023$ APSC approval of change of assessment to a
	portfolio (ADP701 ADP702)
	06/10/2023 AM2 replacement of COM742 with COM754
	and COM738 with COM752

PART TWO PROGRAMME SPECIFICATON

MSc Computer Science
 MSc Computing
 MSc Computer Networking
 MSc Cyber Security
 MSc Computer Science with Advanced Practice
 MSc Computing with Advanced Practice
 MSc Computer Networking with Advanced Practice
 MSc Cyber Security with Advanced Practice

Awarding body

Glyndŵr University
Programme delivered by
Glyndŵr University

Plas Coch Campus, Wrexham
Independent Science and Technology (IST) College-MSc Computing

Londontec City Campus-MSc Computing
Global Pathways Academy (refer to Partner Appendix)
CICRA (refer to Partner Appendix)

Faculty / Department
Faculty of Arts, Science and Technology / Computing
Exit awards available
Pg Dip Computer Science
Pg Dip Computing
Pg Dip Computer Networking
Pg Dip Cyber Security
Pg Dip Computer Science with Advanced Practice
Pg Dip Computing with Advanced Practice
Pg Dip Computer Networking with Advanced Practice
Pg Dip Cyber Security with Advanced Practice
Pg Cert Computing
Professional, Statutory or Regulatory Body (PSRB) accreditation
The programme has been designed to align with the requirements of the British Computer Society (BCS) and accreditation will be requested post approval.
The information above is correct at the point of programme validation, refer to university PSRB register and university website for current details of programme accreditation.

Accreditation available

See above.

Please add details of any conditions that may affect accreditation (e.g. is it dependent on choices made by a student?)

Students must have studied all years at the Wrexham Glyndŵr University campus.
JACS3 code
MSc Computer Science: I100
MSc Computing: I100
MSc Computer Networking: I120
MSc Cyber Security: I190
UCAS code
N/A
Relevant QAA subject benchmark statement/s
Computing (2016)
Master's degrees in computing (2011)
Master's degree characteristics (2015)
Other external and internal reference points used to inform the programme outcomes
BCS: Additional requirements for CITP
BCS: Additional requirements for CEng/CSci
Mode of study
Full \& part time, part-time option only available to Home/EU students
Language of study

English

17 Criteria for admission to the programme

Standard entry criteria

Entry requirements are in accordance with the University's admissions policy https://www.glyndwr.ac.uk/en/media/FINAL\ ADMISSIONS\ POLICY\ 20 17.pdf

The University's entry requirements are set out at
http://www.glyndwr.ac.uk/en/Undergraduatecourses/UCAStariffchange2017/
International entry qualifications are outlined on the National Academic
Recognition and Information Centre (NARIC) as equivalent to the relevant UK entry qualification.

In addition to the academic entry requirements, all applicants whose first language is not English or Welsh must demonstrate English language proficiency.

European students are able to provide this evidence in a number of ways (please see http://www.glyndwr.ac.uk/en/Europeanstudents/entryrequirements/ for details), including IELTS.

International students require a UKVI Approved Secure English Language Test (SELT) (please see
http://www.glyndwr.ac.uk/en/Internationalstudents/EntryandEnglishLanguageRequ irements/ for details).

DBS Requirements

N/A
Non-standard entry criteria and programme specific requirements
N / A

18 Recognition of Prior (Experiential) Learning
Applicants may enter the programme at various levels with Recognition of Prior Learning (RPL) or Recognition of Prior Experiential learning (RPEL) in accordance with the University General Regulations. Any programme specific restrictions are outlined below
Programme specific restrictions
N/A

19 Aims of the programme

These programmes aim to provide a platform for more advanced studies, acquisition of higher-level skills and knowledge, increased employability, and professionalism. The intention of our master's level suite of programmes is to build upon the experiences and achievements of our students and take them to the next level of personal development.

The suite of programmes has overarching aims, which will provide students with:

- A deepened and specialist knowledge in a specific field of computing;
- Higher-level technical and professional skills;
- Awareness of emerging trends and technologies in their specialist field;
- The ability to critically appraise and disseminate research results;
- A sound basis for further research and/or professional development.

At programme specific level, the additional aims are:

MSc Computer Science

- To provide specialist, advanced technical skills in the areas of networking, web and mobile development and software development.

MSc Computing

- To provide a rapid introduction to the field of computing at master's level for students who have had limited experience in the subject discipline, producing competent and energised graduates.

MSc Computer Networking

- To provide a systematic understanding and critical awareness of network structure and data communications principles, current technologies, existing and emerging technological difficulties and new technological insights.

MSc Cyber Security

- To provide a deep and specialist set of knowledge and high-level practical abilities in the field of cyber security, incorporating techniques for the development and analysis of secure systems and technology platforms.

The Advanced Practice route enables students to advance their knowledge and skills in terms of professional and personal development in preparation for their entry into the job market.

20 Distinctive features of the programme

MSc Computer Science

The MSc in Computer Science focuses on the practical science of computer programming with a commercial slant, the development of applications for up to date mobile devices as well as the concepts in data communications. In addition, the programme seeks to develop advanced software development and programming skills and expertise, making graduates ready for challenging and high-paced software development employment. Although the necessary background is introduced as appropriate, the course deals with problem solving and the provisioning of real computer based services and applications using current and emerging technologies. In addition to developing an understanding of underlying principles, students are engaged in the practical application of programme design, modern web technologies, network design, implementation, trouble-shooting and
management for real- world problems. The practicalities of troubleshooting applications are embedded deeply within the programme.

MSc Computing

This programme is primarily designed to provide an opportunity for postgraduate study for those whose first degree is not in computing or for those whose degree in Computing was awarded some years ago. Graduates with some previous industrial experience in the computer field can also broaden their horizons through this MSc programme, by gaining a sound knowledge of the theoretical basis and practical applications of computing. Students exiting the programme are equipped with knowledge of theoretical, academic, evaluative, and vocational expertise. Students will develop their critical thinking skills and their ability to have the foresight to deal with the increasingly challenging and changing nature of the field. The programme is designed to provide the skills to meet industrial and commercial needs, and enable students to practice as computing and IT professionals.

MSc Computer Networking

The MSc in Computer Networking focuses on practical networking rather than abstract concepts in data communications. Although the necessary background is introduced as appropriate, the course on the whole deals with problem solving and the provisioning of real network services using current and emergent network hardware and protocols along with the development of applications to exploit these technologies. In addition to developing an understanding of underlying principles, students are engaged in the practical application of network design, implementation, trouble-shooting and management for real-world problems. The practicalities of network troubleshooting are embedded deeply. At all stages of the programme, appropriate reflection on their progress and development will be a requirement of progress. For their dissertations/theses, students will be expected to investigate cutting-edge technologies, implement and test novel networking solutions or develop or analyse original network applications.

MSc Cyber Security

The MSc Cyber Security is designed to build upon substantial knowledge that has already been gained at undergraduate level, or from more recent industry work, in the field of computer security, cyber security, network security, and related fields. This programme focuses upon several specialist disciplines, which are technical in nature, particularly around the areas of developing secure software platforms and protecting against complex attack processes used to breach system security and create deficits in normal functionality. The programme also integrates professional level skills that relate to the audit and management or institutional and organizational risk relating to cyber security and data protection regulations. This is achieved via a mixture of interactive theory work as well as deep technical and practical teaching and exercises.

In terms of all of the MSc programmes on offer, it is anticipated that graduates will go into careers in the computing and technology fields of their chosen award specialism or to continue their academic study at doctoral (MPhil/PhD) level, and industrial research positions, as well as new roles that are likely to emerge in the industry.

The Advanced Practice component will provide students with the opportunity to enhance personal and professional development in preparation for their entry into the job market. In addition to practical and professional skills gained during their Advanced Practice semester, students will also be able to engage in the process of critical self-reflection and thereby build up more self-awareness, flexibility and
resilience to better prepare themselves for the challenges of the job market, giving them an edge over graduates who have not undertaken a practical work component as part of their degree.

21 Programme structure narrative

All of the MSc programmes included in this suite feature a core backbone of modules, making up 100 credits of the 180 credit programme. This core consists of Postgraduate Study and Research Methods, Technological Horizon-Scanning, and Dissertation.

The programme consists of two parts: part one, which consists of the 120 credits of taught modules; and part two, which is the 60 credit Dissertation. The Dissertation pursued will complement the prior taught modules by focussing upon a theme or topic from the relevant computing discipline.

The module diet of each programme provides a vehicle for these aims and intentions to be met and will equip students with a mixture of theoretical and practical abilities that will allow them to enhance their current skillset in this emerging field. In addition to the specialist content, students will develop transferable skills in working consistently at a professional level and in handling, and responding to, complex, large-scale, information, focused upon current research and industry developments in computing.

The programme is offered in full-time and part-time modes of attendance, and has two intake points every year: Sept Intake and Jan/Feb Intake. Students will typically be expected to attend the University for two or three days a week, full-time, and for one or two days a week, when studying part-time, in addition to studying in their own time.

For the Advanced Practice routes, the taught modules follow the same delivery schedule as the standard routes, with the Advanced Practice module taking place after the completion of all taught modules and before the commencement of the Dissertation. Students will choose one of two Advanced Practice modules:
ADP701: Advanced Practice: Work-Based Learning

- Students will undertake a work placement and be asked to reflect critically on their experience

ADP702: Advanced Practice: Entrepreneurship

- Students will undertake a group entrepreneurial project to produce a product or service. They will then either test trade this product or complete market research. Students will be asked to reflect critically on their experience.

22 Programme structure diagram

MSc Computer Science (Full-time)

| Level 7 | | | $\begin{array}{l}\text { Research } \\ \text { Methods for } \\ \text { Digital } \\ \text { Technologies }\end{array}$ | Mod title | $\begin{array}{l}\text { Network } \\ \text { Hardware } \\ \text { and Software }\end{array}$ | Mod title |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Advanced

Data

Structures and

Algorithms\end{array}\right]\)

	Mod title	Internet and Mobile App Development	Mod title	Security and Risk Management	Mod title	Technological HorizonScanning
	Mod code/ 'New' Module	COM708	Mod code/ 'New' Module	COM744	Mod code/ 'New' Module	COM745
	Credit value	20	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core	Core/Option	Core
	Mod leader	Jason Matthews	Mod leader	Denise Oram	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/ 'New' Module	COM752
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Computing (Full-time)

Level 7						
	Mod title	Research Methods for Digital Technologies	Mod title	Network Hardware and Software	Mod title	Advanced Data Structures and Algorithms
	Mod code/ 'New' Module	COM754	Mod code/ 'New’ Module	COM739	Mod code/ 'New' Module	COM713
	Credit value	20	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core	Core/Option	Core
	Mod leader	Vic Grout	Mod leader	Nigel Houlden	Mod leader	Jessica Muirhead

	Mod title	Database Systems and Analytics	Mod title	Security and Risk Management	Mod title	Technological HorizonScanning
	Mod code/ 'New’ Module	COM736	Mod code/ 'New' Module	COM744	Mod code/ 'New’ Module	COM745
	Credit value	20	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core	Core/Option	Core
	Mod leader	Bindu Jose	Mod leader	Denise Oram	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/ 'New' Module	COM753
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Computer Networking (Full-time)

Level 7						
	Mod title	Research Methods for Digital Technologies	Mod title	Network Hardware and Software	Mod title	Network Technologies
	Mod code/ 'New' Module	COM754	Mod code/ 'New' Module	COM739	Mod code/ 'New' Module	COM741
	Credit value	20	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core	Core/Option	Core
	Mod leader	Vic Grout	Mod leader	Nigel Houlden	Mod leader	Nigel Houlden

	Mod title	Remote Access \& Security	Mod title	Network Algorithms	Remote Access \& Security	Technological HorizonScanning
	Mod code/ 'New' Module	COM743	Mod code/ 'New' Module	COM740	Mod code/ 'New' Module	COM745
	Credit value	20	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Nigel Houlden	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/ 'New' Module	COM752
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Cyber Security (Full-time)

Level 7						
	Mod title	Research Methods for Digital Technologies	Mod title	Advanced Ethical Hacking	Mod title	Applied Cryptography
	Mod code/ 'New' Module	COM754	Mod code 'New' Module	COM733	Mod code/ 'New' Module	COM735
	Credit value	20	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core	Core/Option	Core
	Mod leader	Vic Grout	Mod leader	Nigel Houlden	Mod leader	Vic Grout

$\begin{aligned} & \sim \\ & \stackrel{N}{\omega} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\oplus}{\oplus} \\ & \omega \end{aligned}$	Mod title	Developing Secure Software	Mod title	Security and Risk Management	Remote Access \& Security	Technological HorizonScanning
	Mod code/ 'New' Module	COM737	Mod code/ 'New' Module	COM744	Mod code/ 'New' Module	COM745
	Credit value	20	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Denise Oram	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/ 'New' Module	COM752
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Computer Science (Part-time)

Year 1

	Mod title	Network Hardware and Software	Mod title	Advanced Data Structures and Algorithms
	Mod code/ 'New’ Module	COM739	Mod code/ 'New' Module	COM713
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Jessica Muirhead

	Mod title	Internet and Mobile App Development	Mod title	Security and Risk Management
	Mod code/ 'New' Module	COM708	Mod code/ 'New' Module	COM744
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Jason Matthews	Mod leader	Denise Oram

Year 2

Level 7		
	Mod title	Research Methods for Digital Technologies
	Mod code/'New' Module	COM754
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Technological Horizon-Scanning
	Mod code/'New' Module	COM745
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/'New' Module	COM752
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Computer Science (Part-time - specific cohorts only)

Year 1

Level 7		
	Mod title	Research Methods for Digital Technologies
	Mod code/'New' Module	COM754
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Internet and Mobile App Development	Mod title	Advanced Data Structures and Algorithms
	Mod code/ 'New' Module	COM708	Mod code/ 'New' Module	COM713
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Jason Matthews	Mod leader	Jessica Muirhead

	Mod title	Network Hardware and Software	Mod title	Security and Risk Management
	Mod code/ 'New’ Module	COM739	Mod code/ 'New' Module	COM744
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Denise Oram

Year 2

	Mod title	Technological Horizon-Scanning
	Mod code/'New' Module	COM745
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/ 'New' Module	COM752
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Computing (Part-time)

Year 1

	Mod title	Network Hardware and Software	Mod title	Advanced Data Structures and Algorithms
	Mod code/ ‘New’ Module	COM739	Mod code/ 'New' Module	COM713
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Jessica Muirhead

	Mod title	Database Systems and Analytics	Mod title	Security and Risk Management
	Mod code/ 'New' Module	COM736	Mod code/ 'New' Module	COM744
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Bindu Jose	Mod leader	Denise Oram

Year 2

Level 7		
	Mod title	Research Methods for Digital Technologies
	Mod code/'New' Module	COM754
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Technological Horizon-Scanning
	Mod code/'New' Module	COM745
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/'New' Module	COM752
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Computing (Part-time specific cohorts only)

Year 1

Level 7		
	Mod title	Research Methods for Digital Technologies
	Mod code/'New' Module	COM754
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Database Systems and Analytics	Mod title	Advanced Data Structures and Algorithms
	Mod code/ 'New' Module	COM736	Mod code/ 'New' Module	COM713
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Bindu Jose	Mod leader	Jessica Muirhead

	Mod title	Network Hardware and Software	Mod title	Security and Risk Management
	Mod code/ 'New' Module	COM739	Mod code/ 'New' Module	COM744
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Denise Oram

Year 2

	Mod title	Technological Horizon-Scanning
	Mod code/'New' Module	COM745
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/	COM752
	©	'New' Module

MSc Computer Networking (Part-time)

Year 1

Level 7				
	Mod title	Network Hardware and Software	Mod title	Network Techniques \& Technologies
	Mod code/ 'New' Module	COM739	Mod code/ 'New' Module	COM741
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Nigel Houlden

	Mod title	Remote Access and Security	Mod title	Network Protocols and Algorithms
	Mod code/ 'New' Module	COM743	Mod code/ 'New' Module	COM740
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Nigel Houlden

Year 2

	Mod title	Research Methods for Digital Technologies
	Mod code/'New' Module	COM754
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Technological Horizon-Scanning
	Mod code/'New' Module	COM745
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/'New' Module	COM752
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Computer Networking (Part-time - specific cohorts only))

Year 1

	Level 7			
	Mod title	Network Hardware and Software	Mod title	Network Techniques \& Technologies
	Mod code/ 'New' Module	COM739	Mod code/ 'New' Module	COM741
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Nigel Houlden

	Mod title	Remote Access and Security	Mod title	Network Protocols and Algorithms
	Mod code/ 'New' Module	COM743	Mod code/ 'New' Module	COM740
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Nigel Houlden

	Mod title	Research Methods for Digital Technologies
	Mod code/'New' Module	COM754
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

Year 2

	Mod title	Technological Horizon-Scanning
	Mod code/'New' Module	COM745
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/'New' Module	COM752
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Cyber Security (Part-time)

Year 1

	Mod title	Advanced Ethical Hacking	Mod title	Applied Cryptography
	Mod code/ ‘New’ Module	COM733	Mod code/ 'New' Module	COM735
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Vic Grout

	Mod title	Developing Secure Software	Mod title	Security and Risk Management
	Mod code/ 'New' Module	COM737	Mod code/ 'New' Module	COM744
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Denise Oram

Year 2

Level 7		
	Mod title	Research Methods for Digital Technologies
	Mod code/'New' Module	COM754
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Technological Horizon-Scanning
	Mod code/'New' Module	COM745
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/'New' Module	COM752
	Credit value	60
	Core/Option	Core
	Mod leader	Rich Picking

MSc Cyber Security (Part-time - specific cohorts only)

Year 1

Level 7		
	Mod title	Research Methods for Digital Technologies
	Mod code/'New' Module	COM754
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Developing Secure Software	Mod title	Applied Cryptography
	Mod code/ 'New' Module	COM737	Mod code/ 'New' Module	COM735
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Vic Grout

	Mod title	Advanced Ethical Hacking	Mod title	Security and Risk Management
	Mod code/ 'New' Module	COM733	Mod code/ 'New' Module	COM744
	Credit value	20	Credit value	20
	Core/Option	Core	Core/Option	Core
	Mod leader	Nigel Houlden	Mod leader	Denise Oram

Year 2

N\vdots¢©¢©	Mod title	Technological Horizon-Scanning
	Mod code/'New' Module	COM745
	Credit value	20
	Core/Option	Core
	Mod leader	Vic Grout

	Mod title	Dissertation Project
	Mod code/	Com752
	$\bar{\Phi}$	'New' Module

23 Intended learning outcomes of the programme

MSc Computer Science

Postgraduate

Knowledge and understanding
Level 7
A1 Make professional judgements in the selection of technologies or processes for complex and dynamic scenarios
A2 Give a critical account of current and emerging developments in computer science
A3 Evidence deep comprehension of specialist applications for computer science and recognise the boundaries of knowledge in this domain
A4 Appraise computer network configurations and evaluate their application scenarios
A5 Compare and contrast software development tools and techniques for a variety of practical situations
A6 Demonstrate a sufficiently detailed knowledge of research methods appropriate specifically to their advanced independent-study dissertation/project,
together with detailed knowledge of the particular area in which the project is carried out

Intellectual skills

Level 7
B1 Carry out confident and accurate selection and application of principles and procedures appropriate to the resolution of a range of situations and professional problems associated within the specialist area of computer science
Identify and classify principles, ideas in contemporary information sources, and situations to professional standards; analyse rigorously, effectively, critically and creatively; cope with complexity
Synthesise and predict the future development of current and emerging technologies in the field of computer science, being mindful of external factors
B4 Design and synthesise software and hardware systems in response to a range of technological and practical constraints
B5 Utilise complex, often contradictory, resources and demonstrate how to access these to obtain state-of-the-art knowledge of computer science
B6 Evaluate methods, and plan for, a complex, self-led, investigation in response to a recognised problem or gap in knowledge

Subject skills

Level 7
C1 Work with a range of computer hardware and networked devices to implement complete and functional systems or platforms
C2 Be effective in the acquisition and analysis of data, from a range of sources
C3 Make effective use of a range of theories and techniques applicable to computer science scenarios
C4 Assimilate and integrate emerging developments in computer science into their own work

Subject skills

Level 7 a si

Synthesise the knowledge, skills and theories from the computing areas covered by the programme in order to solve a complex problem that may require the integration of different computer science techniques and / or technologies

Practical, professional and employability skills

Level 7

D1
Display a mastery of working with a range of information sources and be able to objectively arrange these in a holistic manner
D2 Professionally and efficiently operate a range of IT software, specialist computing applications, and configure a range of hardware devices
D3 Effectively and proficiently work with stakeholders in designing IT and computer systems in response to their needs and demands
D4 Make critical decisions regarding technology adoption and success, based upon technological, societal, ethical, and market information
D5 Conduct and control a piece of research or investigation and professionally present the outcomes in a succinct and reflexive manner
D6 Carry out a large-scale, independent project and provide detailed and reflective analysis of its efficacy and value
D7 Advanced Practice route: Demonstrate knowledge and understanding of operating in a business or employer environment(s), and articulate the deployment of higher level skills within this context.

MSc Computing

Postgraduate

Knowledge and understanding

Level 7
A1
Make professional judgements in the selection of technologies or processes for complex and dynamic scenarios
A2 Give a critical account of current and emerging developments in computing
A3 Evidence deep comprehension of specialist applications for computing and recognise the boundaries of knowledge in this domain
A4 Appraise computer network configurations and evaluate their application scenarios
A5 Select and design tools for solving real-world problems that require the integration of large data sets and analytics
A6 Demonstrate a sufficiently detailed knowledge of research methods appropriate specifically to their advanced independent-study dissertation/project, together with detailed knowledge of the particular area in which the project is carried out

Intellectual skills	
	Level 7
B1	Carry out confident and accurate selection and application of principles and procedures appropriate to the resolution of a range of situations and professional problems associated within the specialist area of computing
B2	Identify and classify principles, ideas in contemporary information sources, and situations to professional standards; analyse rigorously, effectively, critically and creatively; cope with complexity
B3	Synthesise and predict the future development of current and emerging technologies in the field of computing, being mindful of external factors
B4	Design and synthesise soffware and hardware systems in response to a range of technological and practical constraints
B5	Utilise comple, often contradictory, resources and demonstrate how to access these to obtain state-of-the-art knowledge of computing
B6	Evaluate methods, and plan for, a complex, self-led, investigation in response to a recognised problem or gap in knowledge

Subject skills
Level 7
C1 Work with a range of computer hardware and networked devices to implement complete and functional systems or platforms
C2 Be effective in the acquisition and analysis of data, from a range of sources
C3 Make effective use of a range of theories and techniques applicable to computing scenarios
Assimilate and integrate emerging developments in computing into their own work
C5
Undertake a significant computing related thesis which involves an analytical, rigorous and critical approach to problem identification, solution and evaluation
C6
Synthesise the knowledge, skills and theories from the computing areas covered by the programme in order to solve a complex problem that may require the integration of different computing techniques and / or technologies

Practical, professional and employability skills

Level 7

D1 Display a mastery of working with a range of information sources and be able to objectively arrange these in a holistic manner
D2 Professionally and efficiently operate a range of IT software, specialist computing applications, and configure a range of hardware devices
D3 Effectively and proficiently work with stakeholders in designing IT and computer systems in response to their needs and demands
D4 Make critical decisions regarding technology adoption and success, based upon technological, societal, ethical, and market information
D5 Conduct and control a piece of research or investigation and professionally present the outcomes in a succinct and reflexive manner
D6 Carry out a large-scale, independent project and provide detailed and reflective analysis of its efficacy and value
D7 Advanced Practice route: Demonstrate knowledge and understanding of operating in a business or employer environment(s), and articulate the deployment of higher level skills within this context.

MSc Computer Networking

Postgraduate

Knowledge and understanding

Level 7
A1
Make professional judgements in the selection of technologies or processes for complex and dynamic scenarios
A2 Give a critical account of current and emerging developments in computer networking
A3 Evidence deep comprehension of specialist applications for computer networking and recognise the boundaries of knowledge in this domain
A4 Appraise computer network configurations and evaluate their application scenarios
A5 Compare and contrast the theories and models of network protocols, algorithms and remote access principles
A6 Demonstrate a sufficiently detailed knowledge of research methods appropriate specifically to their advanced independent-study dissertation/project, together with detailed knowledge of the particular area in which the project is carried out

Intellectual skills					
B1	Level 7				
Carry out confident and accurate selection and application of principles and procedures appropriate to the resolution of a range of situations and					
professional problems associated within the specialist area of computer networking		$	$	B2	Identify and classify principles, ideas in contemporary information sources, and situations to professional standards; analyse rigorously, effectively, critically and creatively; cope with complexity
:---	:---				
B3	Synthesise and predict the future development of current and emerging technologies in the field of computer networking, being mindful of external factors				
B4	Design and synthesise computer networks and infrastructures in response to a range of technological and practical constraints				
B5	Utilise complex, often contradictory, resources and demonstrate how to access these to obtain state-of-the-art knowledge of computer networking				
B6	Evaluate methods, and plan for, a complex, self-led, investigation in response to a recognised problem or gap in knowledge				

Subject skills

Level 7
C1 Work with a range of computer hardware and networked devices to implement complete and functional systems or platforms
C2 Be effective in the acquisition and analysis of data, from a range of sources
C3 Make effective use of a range of theories and techniques applicable to computer networking scenarios
C4 Assimilate and integrate emerging developments in computer networking into their own work
C5 Undertake a significant computer networking related thesis which involves an analytical, rigorous and critical approach to problem identification, solution and evaluation

Subject skills

Level 7
C6
Synthesise the knowledge, skills and theories from the computing areas covered by the programme in order to solve a complex problem that may require the integration of different computer networking techniques and / or technologies

Practical, professional and employability skills

```
Level }
```

D1 Level 7
Display a mastery of working with a range of information sources and be able to objectively arrange these in a holistic manner
D2 Professionally and efficiently operate a range of IT software, specialist computing applications, and configure a range of hardware devices
D3 Effectively and proficiently work with stakeholders in designing IT and computer systems in response to their needs and demands
D4 Make critical decisions regarding technology adoption and success, based upon technological, societal, ethical, and market information
D5 Conduct and control a piece of research or investigation and professionally present the outcomes in a succinct and reflexive manner
D6 Carry out a large-scale, independent project and provide detailed and reflective analysis of its efficacy and value
D7 Advanced Practice route: Demonstrate knowledge and understanding of operating in a business or employer environment(s), and articulate the deployment of higher level skills within this context.

MSc Cyber Security

Postgraduate

Knowledge and understanding

Level 7
A1
Make professional judgements in the selection of technologies or processes for complex and dynamic scenarios
A2 Give a critical account of current and emerging developments in cyber security
A3 Evidence deep comprehension of specialist applications for cyber security and recognise the boundaries of knowledge in this domain
A4 Relate the theories and paradigms of security, risk and information management to the backdrop of a range of cyber attacks and penetration methods
Evaluate the principles and approaches for secure software development in a constantly developing landscape of cyber attacks
A6
Demonstrate a sufficiently detailed knowledge of research methods appropriate specifically to their advanced independent-study dissertation/project, together with detailed knowledge of the particular area in which the project is carried out

ntellectual skills

Level 7
Carry out confident and accurate selection and application of principles and procedures appropriate to the resolution of a range of situations and professional problems associated within the specialist area of cyber security Identify and classify principles, ideas in contemporary information sources, and situations to professional standards; analyse rigorously, effectively, critically and creatively; cope with complexity Synthesise and predict the future development of current and emerging technologies in the field of cyber security, being mindful of external factors Formulate a range of strategies and advanced techniques for secure and auditable information and data storage in contemporary situations Utilise complex, often contradictory, resources and demonstrate how to access these to obtain state-of-the-art knowledge of cyber security
B6 Evaluate methods, and plan for, a complex, self-led, investigation in response to a recognised problem or gap in knowledge

Subject skills

Level 7
C1 Work with a range of cyber security technologies and devices to implement complete and functional systems or platforms
C2 Be effective in the acquisition and analysis of data, from a range of sources
C3 Make effective use of a range of theories and techniques applicable to cyber security scenarios
C4 Assimilate and integrate emerging developments in cyber security into their own work
C5 Undertake a significant cyber security related thesis which involves an analytical, rigorous and critical approach to problem identification, solution and evaluation

Subject skills

Level 7
C6
Synthesise the knowledge, skills and theories from the computing areas covered by the programme in order to solve a complex problem that may require the integration of different cyber security techniques and / or technologies

Practical, professional and employability skills

```
Level }
```

D1 Level 7
Display a mastery of working with a range of information sources and be able to objectively arrange these in a holistic manner
D2 Professionally and efficiently operate a range of IT software, specialist computing applications, and configure a range of hardware devices
D3 Effectively and proficiently work with stakeholders in designing IT and computer systems in response to their needs and demands
D4 Make critical decisions regarding technology adoption and success, based upon technological, societal, ethical, and market information
D5 Conduct and control a piece of research or investigation and professionally present the outcomes in a succinct and reflexive manner
D6 Carry out a large-scale, independent project and provide detailed and reflective analysis of its efficacy and value
D7 Advanced Practice route: Demonstrate knowledge and understanding of operating in a business or employer environment(s), and articulate the deployment of higher level skills within this context.

24 Curriculum matrix

MSc Computer Science

	Module Title	Core or option?	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Research Methods for Digital Technologies	Core	\square											
	Network Hardware and Software	Core	\square											
	Security and Risk Management	Core	\square											
合	Advanced Data Structures and Algorithms	Core	\square	\square	\square	\square	\square	\square	■	\square	\square	\square	\square	\square
	Internet and Mobile App Development	Core	\square											
	Technological Horizon-Scanning	Core	\square											
¢	Dissertation Project	Core	\square											
	Module Title	Core or option?	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Research Methods for Digital Technologies	Core	\square	\square	■	\square	\square	\square	■	\square	\square	\square	■	\square
	Network Hardware and Software	Core	\square	\square	■	\square								
	Security and Risk Management	Core	\square											
o	Advanced Data Structures and Algorithms	Core	\square											
	Internet and Mobile App Development	Core	\square											
	Technological Horizon-Scanning	Core	\square											
¢	Dissertation Project	Core	\square											

For successful completion of the Advanced Practice route, students will achieve the learning outcomes highlighted in the tables above as well as Learning Outcomes D7.

MSc Computing

	Module Title	Core or option?	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6
$\begin{aligned} & \text { O } \\ & \text { O } \end{aligned}$	Research Methods for Digital Technologies	Core	\square											
	Network Hardware and Software	Core	\square											
	Security and Risk Management	Core	\square											
合	Advanced Data Structures and Algorithms	Core	\square											
	Database Systems and Analytics	Core	\square											
	Technological Horizon-Scanning	Core	\square											
¢	Dissertation Project	Core	\square											
	Module Title	Core or option?	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6
O	Research Methods for Digital Technologies	Core	\square	\square	■	\square								
	Network Hardware and Software	Core	\square											
	Security and Risk Management	Core	\square											
合	Advanced Data Structures and Algorithms	Core	\square	\square	■	\square								
	Database Systems and Analytics	Core	\square											
	Technological Horizon-Scanning	Core	\square											
¢	Dissertation Project	Core	\square	\square	\square	■	\square							

For successful completion of the Advanced Practice route, students will achieve the learning outcomes highlighted in the tables above as well as Learning Outcomes D7.

MSc Computer Networking

	Module Title	Core or option?	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6
$\begin{aligned} & \text { O } \\ & \text { O } \end{aligned}$	Research Methods for Digital Technologies	Core	\square											
	Network Hardware and Software	Core	\square											
	Network Techniques \& Technologies	Core	\square											
合	Remote Access and Security	Core	\square											
	Network Protocols and Algorithms	Core	\square											
	Technological Horizon-Scanning	Core	\square											
¢	Dissertation Project	Core	\square											
	Module Title	Core or option?	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6
O	Research Methods for Digital Technologies	Core	\square	\square	■	\square								
	Network Hardware and Software	Core	\square											
	Network Techniques \& Technologies	Core	\square											
合	Remote Access and Security	Core	\square	\square	■	\square								
	Network Protocols and Algorithms	Core	\square											
	Technological Horizon-Scanning	Core	\square											
¢	Dissertation Project	Core	\square	\square	\square	■	■	\square						

For successful completion of the Advanced Practice route, students will achieve the learning outcomes highlighted in the tables above as well as Learning Outcomes D7.

MSc Cyber Security

	Module Title	Core or option?	A1	A2	A3	A4	A5	A6	B1	B2	B3	B4	B5	B6
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Research Methods for Digital Technologies	Core	\square											
	Advanced Ethical Hacking	Core	\square											
	Security and Risk Management	Core	\square											
$\frac{0}{0}$	Applied Cryptography	Core	\square	\square	\square	\square	\square	\square	■	\square	\square	\square	\square	\square
	Developing Secure Software	Core	\square											
	Technological Horizon-Scanning	Core	\square											
¢	Dissertation Project	Core	\square											
	Module Title	Core or option?	C1	C2	C3	C4	C5	C6	D1	D2	D3	D4	D5	D6
$\begin{aligned} & \text { O } \\ & 0 \end{aligned}$	Research Methods for Digital Technologies	Core	\square	\square	\square	\square	\square	\square	■	\square	\square	\square	\square	\square
	Advanced Ethical Hacking	Core	\square											
	Security and Risk Management	Core	\square											
B	Applied Cryptography	Core	\square											
	Developing Secure Software	Core	\square											
	Technological Horizon-Scanning	Core	\square											
O	Dissertation Project	Core	\square											

For successful completion of the Advanced Practice route, students will achieve the learning outcomes highlighted in the tables above as well as Learning Outcomes D7.

Learning and teaching strategy

The programme is informed and guided by the Computing Learning, Teaching and Assessment strategy. It seeks to assist the student to become an independent learner, delivering subject skills alongside the embedding of skills for employment. The curriculum is designed to encourage an appreciation for learning. Learning is enriched by appropriate underpinnings, current research, industrial applications and the development of transferable skills.

The majority of scheduled learning and teaching activities is through attendance at lectures, guest talks, tutorials, and labs. Attendance at external events and field trips are made available and as when they are appropriate and practicable. These modes of contact provide students with the ability to develop and practice the range of learning outcomes associated with the programme, ranging from the theoretical to the practical.

In the early stages of each module, problems will be well defined and limited in scope and scale. At later stages, problems will become less structured (to encourage reflection on problem issues) and open-ended (to give scope to propose and evaluate alternative solution strategies). Case studies are used when appropriate to integrate study topics and to underline vocational relevance. Coursework assignments are important throughout.

As the programme progresses, students are expected to demonstrate increasing proficiency in use of IT tools and techniques to support production of technical documentation, to enhance oral and written presentations, and to aid organisation of personal study material.

Part two of the programme is the Dissertation and is an area that has been given special consideration since it is such a significant piece of work undertaken by the student. While students study the taught part of the course they are given a 1 hour a week special lecture to inform them of the requirements of the Dissertation. This module is run so that it coincides with the end of the taught part of the course, which means that on completion of part one students can start immediately on producing the proposal for the dissertation. On submission of the proposal it is assessed and passed to an appropriate supervisor with expertise in the area that the student wishes to carry out the work. It is the supervisor's task to work with the student to improve the proposal to a level that is acceptable and achievable for a master's level within the time constraints. Students work independently on the dissertation having regular meetings with the supervisor. It is important that the student identifies at the proposal stage the various requirements needed to complete the dissertation e.g. equipment, software, space.

Extensive use is made of the University's Virtual Learning Environment (VLE), Moodle, to provide students with access to a range of delivery, and supporting, materials related to each of the modules featured on the programme. In addition to the materials used during the taught sessions, the VLE is used to provide students with additional content such as quizzes, videos, audio recordings, external links, technical reports, research papers, and so forth. The VLE also provides students with the ability to communicate using discussion forums and is the platform primarily used in the issuing, submission, marking, and feedback of student assessment.

26 Work based/placement learning statement

For programmes without the Advanced Practice option, students are encouraged to use their current or previous work experience to reflect on during the programme. Where practical, students may apply relevant learning to their workplace through applied projects and utilising real-word examples within their assessments.

Programmes on the Advanced Practice route offer substantive work-based learning via the advanced practice module. While advice can be sought from the Work-related Learning Unit (WRLU) during the process, students are ultimately responsible for securing a placement using the protocol described in the Advanced Practice module handbook. Alternatively, they might opt to undertake a group entrepreneurial project to produce a product or service.

Students opt to undertake Advanced Practice Work Based Learning are required to submit a Placement Proposal and a Placement Specification form to the WRLU before the placement can be approved. The Placement Specification should be signed by WRLU, Placement Provider and student. Placement hours are to be recorded by students in a log and signed off by a manager at their workplace at the end of the placement. Any cause of concerns, either from students or from placement providers shall be referred to the Work-related Learning Unit who will follow the procedures outlined in the Advanced Practice handbook for remedy actions.

27 Welsh medium provision

The programmes will be delivered through the medium of English. Students are entitled to submit assessments in the medium of Welsh.

28 Assessment strategy

A range and diversity of assessment is provided on the programme as a way to allow students with multiple types of opportunity to demonstrate the skills and knowledge that they are developing over the duration of the programme and to help support inclusivity. This mixture often makes use of assessment methods where students must document a process or solution to a challenge, but also in the submission of artefacts, such as computer programs, databases, media assets, and practical network implementations.

Module code \& title	Assessment type and weighting	Assessment loading	Indicative submission date
Research Methods for Digital Technologies	Coursework 100\%		Sem1, Wk12
Network Hardware and Software	In-class test 20\% Practical 30\% Coursework 50\%	2.5 hrs 2 hrs 2000 words	Sem1, ongoing Sem1, ongoing Sem1, Wk12
Network Techniques \& Technologies	In-class test 20\% Practical 30\% Coursework 50\%	2.5 hrs 2 hrs 2000 words	Sem1, ongoing Sem1, ongoing Sem1, Wk12
Internet and Mobile App Development	Coursework 100\%		Sem2, Wk12
Advanced Data Structures and Algorithms	Portfolio 70\% Project 30\%		Ongoing: Wk 2 to Wk 8, Sem 1 Week 12, Sem 1
Database Systems and Data Analytics	Coursework 50\% Coursework 50\%	$\begin{aligned} & \text { N/A } \\ & 3000 \text { words } \end{aligned}$	Sem2, Wk6 Sem2, Wk12

 Security	Case Study 100\%		Sem2, ongoing
Network Protocols \&	In-class test 15\%	1.15 hrs	Sem2, ongoing
Algorithms	Practical 20\%	2 hrs	Sem2, ongoing
	Coursework 65\%	3000 words	Sem2, Wk12
Advanced Ethical	Coursework 60\%	3000 words	Sem1, Wk6
Hacking	Practical 40\%	2 hrs	Sem1, Wk12
Security and Risk	Case Study 70\%	4000 words	Sem1, Wk6
Management	In-class test 30\%	1.5 hrs	Sem1, Wk12
Developing Secure	Portfolio 70\%	4000 words	Sem2, Wk6
Software	In-class test 30\%	1.5 hrs	Sem2, Wk12
Applied Cryptography	Exam 50\%	2 hrs	Sem2, Wk13-14
	Practical 50\%	3000 words	Sem2, Wk10
Technological Horizon-	Presentation 40\%	30 minutes	Sem2, Wk6
Scanning	Report 60\%	3500 words	Sem2, Wk12
Dissertation Project	Research proposal 10\%	3000 words	Sem3, Wk1
	Dissertation 90\%	$15,000-20,000$	Sem3, Wk12
Advanced Practice:	Portfolio 100\%,	500 words	ongoing
Work-based Learning	(pass/refer)	500 words	
		500 words	
		750 words	
Advanced Practice:	Portfolio 100\%,	1250 words	
Entrepreneurship	(pass/refer)	500 words	
		500 words	ongoing
		500 words	

29 Assessment regulations

University regulations for Taught Masters Degrees apply.
For students on the Advanced Practice route, please note that the Advanced Practice module will not be used towards the degree classification and will show as pass/fail only on the transcript. Please consult the Taught Masters Regulations available on the Student Administration web pages.

Derogations

N/A
Non-credit bearing assessment
N/A
Restrictions for trailing modules (for taught masters programmes only)
None other than Postgraduate Study and Research Methods.

30 Programme Management

Programme leader
Nigel Houlden

Module Leaders
Nigel Houlden
Prof. Vic Grout
Mrs. Bindu Jose
Mrs. Denise Oram
Mr. Jason Matthews
Prof. Richard Picking
Link to Staff Profiles
https://www.glyndwr.ac.uk/en/StaffProfiles/VicGrout/
https://www.glyndwr.ac.uk/en/StaffProfiles/BinduJose/
https://www.glyndwr.ac.uk/en/StaffProfiles/DeniseOram/
https://www.glyndwr.ac.uk/en/StaffProfiles/JasonMatthews/ https://www.glyndwr.ac.uk/en/StaffProfiles/RichardPicking/

31 Quality Management

Programme Management

The designated Programme Leader who will be responsible for the day-to-day running of the programme, including the following:

- The management and development of curriculum and the course portfolio
- Student tracking and student records
- Collation of assessment data and presentation of data at assessment boards
- Management/co-ordination of overall assessment activities across the programme
- Liaison with external bodies and agencies
- Quality assurance and annual monitoring, including compilation of the Annual
- Monitoring Report
- Co-ordination of admissions activities and other recruitment activities, including relevant publicity activities

At module level there is devolved responsibility to Module Leaders for the following:

- The maintenance and development of teaching and learning materials for all students enrolled on the module
- The publishing and updating of module timetables, which shall include a weekly schedule of module sessions and required reading, to be distributed to students at the start of all modules
- The setting, marking and collation of marks for all module assessments and examination papers, including resit assessments, and submission of student results to the Programme Leader
- Tutorial support for students taking the module which they are responsible
- Quality monitoring, including processing of annual student feedback questionnaires and, where appropriate, feedback for individual modules
- Liaison with part-time members of staff involved in module teaching

Student Feedback

The University has procedures for the regular review of its educational provision, including the annual review of modules and programmes, which draw on feedback from such sources as external examiner reports, student evaluation, student achievement, and progression data. In addition, programmes are subject to a
programme periodic review (PPR) and re-validation in year 5 that includes external input.

Feedback from students plays a critical part in informing the Faculty's strategic thinking. It also allows the Faculty to evaluate how its most important group of stakeholders, its students, views its service provision. Students can provide feedback in a number of ways, for instance:

Student Voice Forum (SVF): Chaired by a member of academic staff from outside the programme, will be held at least once per semester. The Chair will minute student feedback for action/response by the Programme Leader. Minutes of the SVFs and the response from the Programme Leader will be posted on the programme pages of Moodle. All programmes have representation at SVFs.

Student Evaluation of Modules (SEM): Module Leaders will distribute SEMs at the end of each module. A summary of the analysis of the SEMs, along with any other feedback (e.g. from the student suggestion box), will be passed to the Programme Leader for action/response.

Feedback on assessed work: Students submit work in a number of different ways depending on the module being studied. Wherever possible Moodle is used for electronic submission and Turnitin to check the similarity score and tutors give feedback via this interface within 3 working weeks. Practical work is developed and assessed by having students demonstrate their work, again immediate feedback is given. At the end of a module, overall feedback is provided along with a clear indication of what area the student needs, if necessary, to resubmit or what areas were good and which areas can be improved on.

32 Research and scholarship activity

Research within the programme team is co-ordinated at a Faculty level and, at a local level manifests itself through the Applied Research in Computing Laboratories (ARClab) group. ARClab's research encompasses the broader computing subject and is concentrated in the following areas:

- IoT, Networking and Cybersercurity
- Audio and Affective Computing
- Health and Assisted Living Technologies
- HCI, Augmented and Virtual Reality
- CAD/Engineering software
- MIS/Business
- Ethics/professionalism
- Robotics/AI

ARClab has taken over from the previous Computing research groups of Creative and Applied Research for the Digital Society (CARDS) and the Centre for Applied Internet Research (CAIR), which built up their activities very impressively over the past ten years. The commitment and enthusiasm of the staff is very evident and significant outputs have been achieved over a whole range of activities, covering publications, grant winning, conference organisation, industrial engagement etc.

Significant achievements during the recent past include the very professional organisation of a conference to the highest international standards; the development of a large-scale EU-funded research project, the steady production of conference publications, in addition to a sound proportion of academic journal publications; the
setting up of a usability laboratory - a relatively unique facility in Wales; the importing of a substantial new base of specialism in wireless technologies and a success in a radio frequency identification tagging (RFID) project, which is intended to be rapidly grown into an additional research theme.

33 Learning support

Institutional level support for students

The University has a range of departments that offer the support for students as:

- Library \& IT Resources
- The Assessment Centre
- DisAbility Support Team
- Irlen Centre
- Careers Centre and Job Shop
- Zone Enterprise hub
- Chaplaincy
- Counselling \& Wellbeing
- Student Funding and Welfare
- International Welfare
- Student Programmes Centre
- Glyndŵr Students' Union
- Work-related Learning Unit

Faculty support for students

All students at Wrexham Glyndŵr University are allocated a Personal Tutor whose main responsibility is to act as the first point of contact for their personal students and to provide pastoral and academic support throughout their studies at the University. It is a vital role to support student engagement and retention, and to help every student to success to the best of his or her ability.

Programme specific support for students

Induction

New students on the programme will undergo an induction programme that will provide them with a full introduction to the programme and will include elements of work on study skills and professional development.

Student Handbook

All students on the programme will receive a Student Handbook, provided electronically via the VLE, which will contain details and guidance on all aspects of the programme and forms of student support and guidance, programme-based, and Faculty-based.

Computing Labs

The majority of Computing provision is located on the Wrexham campus, including teaching rooms, lecture theatres, staff offices, and specialist labs. There are a number of specialist computer labs on the Wrexham campus, including general purpose computing laboratories that support the teaching. These specialist labs offer access to a range of software that is utilised within the modules defined in the programme.

Open Door Policy

Computing operates an Open Door policy, meaning that academic staff are readily and easily accessible and approachable for students outside of scheduled learning
and teaching hours. Staff can be approached without the need for a formal appointment to be made.

Progress Review and Attendance Monitoring
Student attendance will be subject to regular monitoring through registers, and this will be a means of addressing issues of student support. There will also be regular reviews for each student with personal tutors.

34 Equality and Diversity

Glyndŵr University is committed to providing access to all students and promotes equal opportunities in compliance with the Equality Act 2010 legislation. This programme complies fully with the University's Equal Opportunities Policy (http://www.glyndwr.ac.uk/en/AboutGlyndwrUniversity/Governance/TheFile,64499,en.
pdf), ensuring that everyone who has the potential to achieve in higher education is given the chance to do so.

DATE OF APPROVAL	
Date of programme delivery approval event:	28 November 2019 Desk based re-approval conducted by APC
Date of approval by Academic Board:	09 December 2019

APPENDIX 1 - PARTNER PROVIDER SUPPLEMENT TO PROGRAMME SPECIFICATION

When printed this becomes an uncontrolled document. Please check the Programme

 Directory for the most up to date version by clicking here.| Programme Title(s): MSc Computing
 This is the intended award title from the definitive Programme Specification and what will be printed on the award certificate. | |
| :---: | :---: |
| 1 | Awarding body |
| | Glyndwr University |
| 2 | Partner Provider |
| | Londontec City Campus |
| 3 | Location of delivery |
| | No. 6/1A Pepiliyana Road, Gamsabha Junction, Nugegoda, WP 10250 Sri Lanka |
| 4 | Faculty/Department |
| | Faculty of Arts, Science and Technology |
| 5 | Mode of study |
| | Full time |
| 6 | Frequency / timing of intake/s |
| | 2 intake point per academic year (Sep \& Feb) |
| 7 | Language of study |
| | English |
| 8 | Name of academic link (correct at the point of programme approval) |
| | John Worden |

9 GU Approved Partner Programme Delivery Schedule(s)
September intake - \mathbf{f} / \mathbf{t}

Semester 1 Sep-Jan	COM742 Postgraduate Study and Research Methods	COM736 Database Systems and Data Analytics	COM713 Advanced Data Structures and Algorithms
Semester 2 Feb-May	COM739 Network Hardware and Software	COM744 Security and Risk Management	COM745 Technological Horizon- Scanning
Semester 3 Jun-Aug	COM738 Dissertation		

January intake - f/t

Semester 2 Feb-May	COM745 Technological Horizon- Scanning	COM739 Network Hardware and Software	COM744 Security and Risk Management
Semester 3 Jun-Aug	COM713 Advanced Data Structures and Algorithms	COM742 Postgraduate Study and Research Methods	COM736 Database Systems and Data Analytics
Semester 1 Sep-Jan	COM738 Dissertation		

APPENDIX 2 - PARTNER PROVIDER SUPPLEMENT TO PROGRAMME SPECIFICATION

When printed this becomes an uncontrolled document. Please check the Programme Directory for the most up to date version by clicking here.

Programme Title(s): MSc Computing

This is the intended award title from the definitive Programme Specification and what will be printed on the award certificate.

9 GU Approved Partner Programme Delivery Schedule(s)
September intake - $\mathbf{f / t}$

Year 1			
Semester 1	COM742 Postgraduate Study and Research Methods	COM739 Network Hardware and Software	COM713 Advanced Data Structures and Algorithms
Semester 2	COM736 Database Systems and Analytics	COM744 Security and Risk Management	COM745 Technological Horizon Scanning
Semester 3	COM738 Dissertation		

Semester 1 - Sept to Jan
Semester 2 - Feb to Apr
Semester 3 - May to Aug
Assessment is subject to GU's regulations. GU assessments are to be used however if there are any additional assessments required to be written by IST as advised by GU, IST are to submit them to GU for approval by GU prior to use. The assessment schedule at IST will be aligned with that of GU.

DATE OF APPROVAL

Date of programme delivery approval event: 21 January 2021
Date of approval by Academic Board:

APPENDIX 1 - PARTNER PROVIDER SUPPLEMENT TO PROGRAMME SPECIFICATION

When printed this becomes an uncontrolled document. Please check the Programme Directory for the most up to date version by clicking here.

```
Programme Title(s):
MSc Computing
MSc Computer Science
MSc Computer Networking
MSc Cyber Security
This is the intended award title from the definitive Programme Specification and what will be printed on the award certificate.
```

1

2

3

Awarding body

Glyndŵr University
Partner Provider
Global Pathways Academy
Location of delivery
Global Pathways Academy, \#806, Souravya, 10th A Main Road, Indiranagar 1st Stage, Bangalore - 560038

Western International College (WINC) \#22/1, Siddedahalli ,off Hesarghatta Main Rd, behind Siddineya Temple, Nagasandra Post, Bengaluru, 560073

Western International College (WINC) FZE, PO Box 16038, Ras AI Khaimah Free Trade Zone, Ras AI Khaimah, UAE and/or other sites as approved by Glyndwr in writing.
Faculty/Department
Faculty of Arts, Science and Technology
Mode of study
Part time - PG PT
Frequency / timing of intake/s
3 intake points per academic year (July, September and January)
Language of study
English
Name of academic link (correct at the point of programme approval)
Computing - John Worden

POSTGRADUATE COMPUTING PROGRAMMES

MSc Computing
MSc Computer Science
MSc Computer Networking
July intake - p/t

Year 1		
Semester 3 Jul to Aug	COM742 Postgraduate Study and Research Methods (20 credits) CORE	COM745 Technological Horizon-Scanning (20 credits) CORE
Semester 1 Sept to Jan	COM739 Network Hardware and Software (20 credits) CORE	MSc Computing \& MSc Computer Science COM713 Advanced Data Structures and Algorithms (20 credits) CORE MSc Computer Networking COM741 Network Techniques \& Technologies (20 credits) CORE
Semester 2 Feb to May	MSc Computing COM736 Database Systems and Analytics (20 credits) CORE MSc Computer Science COM708 Internet and Mobile App Development (20 credits) CORE MSc Computer Networking COM743 Remote Access and Security (20 credits) CORE	MSc Computing COM744 Security and Risk Management (20 credits) CORE MSc Computer Science COM744 Security and Risk Management (20 credits) CORE MSc Computer Networking COM740 Network Protocols and Algorithms (20 credits) CORE

Year 2	
Semester 3/1	COM738 Jun to Jan Dissertation (60 credits) CORE

September intake - \mathbf{p} / \mathbf{t}

Year 1		
Semester 1 Sep to Jan	COM739 Network Hardware and Software (20 credits) CORE	MSc Computing \& MSc Computer Science COM713 Advanced Data Structures and Algorithms (20 credits) CORE MSc Computer Networking COM741 Network Techniques \& Technologies (20 credits) CORE
Semester 2 Feb to May	MSc Computing COM736 Database Systems and Analytics (20 credits) CORE MSc Computer Science COM708 Internet and Mobile App Development (20 credits) CORE MSc Computer Networking COM743 Remote Access and Security (20 credits) CORE	MSc Computing COM744 Security and Risk Management (20 credits) CORE MSc Computer Science COM744 Security and Risk Management (20 credits) CORE MSc Computer Networking COM740 Network Protocols and Algorithms (20 credits) CORE
Semester 3 Jun to Aug	COM742 Postgraduate Study and Research Methods (20 credits) CORE	COM745 Technological Horizon-Scanning (20 credits) CORE

Year 2	
Semester 1/2	COM738 Dissertation (60 May (CORE

February intake - \mathbf{p} / \mathbf{t}

Year 1		
Semester 2 Feb to May	MSc Computing COM736 Database Systems and Analytics (20 credits) CORE MSc Computer Science COM708 Internet and Mobile App Development (20 credits) CORE MSc Computer Networking COM743 Remote Access and Security (20 credits) CORE	MSc Computing COM744 Security and Risk Management (20 credits) CORE MSc Computer Science COM744 Security and Risk Management (20 credits) CORE MSc Computer Networking COM740 Network Protocols and Algorithms (20 credits) CORE
Semester 3 Jun to Aug	COM742 Postgraduate Study and Research Methods (20 credits) CORE	COM745 Technological Horizon-Scanning (20 credits) CORE
Semester 1 Sep to Jan	COM739 Network Hardware and Software (20 credits) CORE	MSc Computing \& MSc Computer Science COM713 Advanced Data Structures and Algorithms (20 credits) CORE MSc Computer Networking COM741 Technologies (20 credits) CORE

Year 2	
Semester 2/3	COM738 Dissertation (60 Aug CORE

MSc Cyber Security

July intake - p/t

Year 1		
Semester 3 Jul to Aug	COM742 Postgraduate Study and Research Methods (20 credits) CORE	COM745 Technological Horizon-Scanning (20 credits) CORE
Semester 1	COM733 Sdvanced Ethical Hacking (20 credits) CORE	COM735 Applied Cryptography (20 credits) CORE
Semester 2 Feb to May	COM737 Developing Secure Software (20 credits) CORE	COM744 Security and Risk Management (20 credits) CORE

Year 2	
Semester 3/1 Jun to Jan	COM738 Dissertation (60 credits) CORE

September intake - \mathbf{p} / \mathbf{t}

Year 1		
Semester 1 Sept to Jan	COM733 Advanced Ethical Hacking (20 credits) CORE	COM735 Applied Cryptography (20 credits) CORE
Semester 2	COM737 Developing Secure Software (20 credits) CORE	COM744 Security and Risk Management (20 credits)
Comester 3 Jun to Aug	COM742 Postgraduate Study and Research Methods (20 credits) CORE	COM745 Technological Horizon-Scanning (20 credits) CORE

Year 2	
Semester 1/2	COM738 Dep to May (issertation CORE

February intake - p / t

Year 1				
Semester 2	$\begin{array}{l}\text { COM737 } \\ \text { Developing Secure Software } \\ \text { (20 credits) } \\ \text { CORE }\end{array}$	$\begin{array}{l}\text { COM744 } \\ \text { Security and Risk Management } \\ \text { (20 credits) }\end{array}$		
CORE			$]$	COM745
:---				
Technological Horizon-Scanning				

Jun to Aug	Postgraduate Study and Research Methods (20 credits) CORE	(20 credits) CORE
Semester 1	COM733 Advanced Ethical Hacking (20 credits) CORE	COM735 Applied Cryptography (20 credits) CORE

Year 2	
Semester 2/3	COM738
Feb to Aug	Dissertation (60 credits) CORE

APPENDIX 1 - PARTNER PROVIDER SUPPLEMENT TO PROGRAMME SPECIFICATION

When printed this becomes an uncontrolled document. Please check the Programme Directory for the most up to date version by clicking here.

Programme Title(s): MSc Cyber Security

This is the intended award title from the definitive Programme Specification and what will be printed on the award certificate.

1	Awarding body
3	Glyndŵr University
4	Partner Provider CICRA Campus
5	Location of delivery CICRA Campus (PVT) Ltd, No. 1002, Eighth Floor, Unity Plaza, No. 2, Galle Road, Colombo 00400. Sri Lanka
6	Faculty/Department Faculty of Arts, Science and Technology
7	Mode of study Full time
Frequency / timing of intake/s	
2	2 intake point per academic year (September and February)
Language of study	
8	English
Name of academic link (correct at the point of programme approval)	

Module Delivery Sequence

Module	Credit Value	Core / Option	September Intake	February Intake
COM742 Postgraduate Study and Research Methods	20	Core	Semester 1	Semester 1
COM733 Advanced Ethical Hacking	20	Core	Semester 1	Semester 1
COM735 Applied Cryptography	20	Core	Semester 1	Semester 1
COM737 Developing Secure Software	20	Core	Semester 2	Semester 2
COM744 Security and Risk Management	20	Core	Semester 2	Semester 2
COM745 Technological Horizon- Scanning	20	Core	Semester 2	Semester 2
COM738 Dissertation	60	Core	Dissertation Semester	Dissertation Semester

